Enter a problem...
Finite Math Examples
2rcos(α)+(rcos(α))2⋅cos(α)
Step 1
Step 1.1
Factor cos(α) out of 2rcos(α).
cos(α)(2r)+(rcos(α))2⋅cos(α)
Step 1.2
Factor cos(α) out of (rcos(α))2⋅cos(α).
cos(α)(2r)+cos(α)⋅(rcos(α))2
Step 1.3
Factor cos(α) out of cos(α)(2r)+cos(α)⋅(rcos(α))2.
cos(α)(2r+(rcos(α))2)
cos(α)(2r+(rcos(α))2)
Step 2
Let u=r. Substitute u for all occurrences of r.
cos(α)(2u+u2cos2(α))
Step 3
Step 3.1
Factor u out of 2u.
cos(α)(u⋅2+u2cos2(α))
Step 3.2
Factor u out of u2cos2(α).
cos(α)(u⋅2+u(ucos2(α)))
Step 3.3
Factor u out of u⋅2+u(ucos2(α)).
cos(α)(u(2+ucos2(α)))
cos(α)(u(2+ucos2(α)))
Step 4
Step 4.1
Replace all occurrences of u with r.
cos(α)(r(2+rcos2(α)))
Step 4.2
Remove unnecessary parentheses.
cos(α)r(2+rcos2(α))
cos(α)r(2+rcos2(α))
Step 5
Apply the distributive property.
cos(α)r⋅2+cos(α)r(rcos2(α))
Step 6
Move 2 to the left of cos(α)r.
2⋅(cos(α)r)+cos(α)r(rcos2(α))
Step 7
Step 7.1
Move cos2(α).
2⋅(cos(α)r)+cos2(α)cos(α)r⋅r
Step 7.2
Multiply cos2(α) by cos(α).
Step 7.2.1
Raise cos(α) to the power of 1.
2⋅(cos(α)r)+cos2(α)cos1(α)r⋅r
Step 7.2.2
Use the power rule aman=am+n to combine exponents.
2⋅(cos(α)r)+cos(α)2+1r⋅r
2⋅(cos(α)r)+cos(α)2+1r⋅r
Step 7.3
Add 2 and 1.
2⋅(cos(α)r)+cos3(α)r⋅r
2⋅(cos(α)r)+cos3(α)r⋅r
Step 8
Step 8.1
Move r.
2cos(α)r+cos3(α)(r⋅r)
Step 8.2
Multiply r by r.
2cos(α)r+cos3(α)r2
2cos(α)r+cos3(α)r2
Step 9
Reorder factors in 2cos(α)r+cos3(α)r2.
2rcos(α)+r2cos3(α)
Step 10
Step 10.1
Factor rcos(α) out of 2rcos(α).
rcos(α)(2)+r2cos3(α)
Step 10.2
Factor rcos(α) out of r2cos3(α).
rcos(α)(2)+rcos(α)(rcos2(α))
Step 10.3
Factor rcos(α) out of rcos(α)(2)+rcos(α)(rcos2(α)).
rcos(α)(2+rcos2(α))
rcos(α)(2+rcos2(α))